

16

(b) Express $x^2 - 10x + 40$ in the form $(x + a)^2 + b$, where a and b are integers.

..... (2)

(Total for Question 16 is 5 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

18

17

(c) Express $4x^2 - 8x + 7$ in the form $a(x + b)^2 + c$ where a , b and c are integers.

.....

(3)

(Total for Question 17 is 8 marks)

20

DO NOT WRITE IN THIS AREA

19

Given that a , b and c are integers,

(b) express $3x^2 + 12x + 19$ in the form $a(x + b)^2 + c$

.....
(2)

(Total for Question 19 is 3 marks)

P 6 8 7 2 7 A 0 2 3 3 2

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

19 Express $3x^2 - 6x + 5$ in the form $a(x - b)^2 + c$

(Total for Question 19 is 3 marks)

P 7 2 8 2 8 A 0 1 9 2 8

20 (a) Write $3x^2 - 12x + 7$ in the form $a(x + b)^2 + c$

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

.....
(3)

The line **L** is the line of symmetry of the curve with equation $y = 3x^2 - 12x + 7$

(b) Using your answer to part (a) or otherwise, write down an equation of **L**.

.....
(1)

(Total for Question 20 is 4 marks)

20 (a) Express $2x^2 - 11x + 9$ in the form $a(x - b)^2 - c$ where a , b and c are numbers to be found.

.....
(3)

The curve **C** has equation $y = 2(x - 3)^2 - 11(x - 3) + 9$

The point P is the minimum point on **C**

(b) Find the coordinates of P

(.....,)
(2)

(Total for Question 20 is 5 marks)

DO NOT WRITE IN THIS AREA

21 The function f is such that $f(x) = 5 + 6x - x^2$ for $x \leq 3$

(a) Express $5 + 6x - x^2$ in the form $p - (x - q)^2$ where p and q are constants.

.....
(2)

(b) Using your answer to part (a), find the range of values of x for which $f^{-1}(x)$ is positive.

.....
(5)

(Total for Question 21 is 7 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

22 Write $5 + 12x - 2x^2$ in the form $a + b(x + c)^2$ where a , b and c are integers.

(Total for Question 22 is 4 marks)

22 The curve **S** has equation $y = f(x)$ where $f(x) = x^2$
The curve **T** has equation $y = g(x)$ where $g(x) = 2x^2 - 12x + 13$

By writing $g(x)$ in the form $a(x - b)^2 - c$, where a , b and c are constants,
describe fully a series of transformations that map the curve **S** onto the curve **T**.

(Total for Question 22 is 4 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

23 Express $7 - 12x - 2x^2$ in the form $a + b(x + c)^2$ where a , b and c are integers.

.....

(Total for Question 23 is 3 marks)

P 5 9 8 1 7 R A 0 2 3 2 8

23 (a) Express $2x^2 - 12x + 3$ in the form $a(x + b)^2 + c$ where a , b and c are integers.

.....
(3)

The curve **C** has equation $y = 2(x + 4)^2 - 12(x + 4) + 3$

The point M is the minimum point on **C**

(b) Find the coordinates of M

(.....,)
(2)

(Total for Question 23 is 5 marks)

DO NOT WRITE IN THIS AREA

24 (a) Write $7 + 12x - 3x^2$ in the form $a + b(x + c)^2$ where a , b and c are integers.

.....
(4)

The curve **C** has equation $y = 7 + 12x - 3x^2$

The point **A** is the turning point on **C**.

(b) Using your answer to part (a), write down the coordinates of **A**.

(.....,)
(1)

(Total for Question 24 is 5 marks)

24 Express each of a , b and c in terms of q so that

$$q + 12x - qx^2$$

can be written as $a - b(x - c)^2$

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

$$a = \dots$$

$$b = \dots$$

$$c = \dots$$

(Total for Question 24 is 4 marks)

24 (a) Express $7 - 4x - x^2$ in the form $p - (x + q)^2$ where p and q are constants.

(2)

(b) Use your answer to part (a) to solve the equation $7 - 4(y + 3) - (y + 3)^2 = 0$

Give your solutions in the form $e \pm \sqrt{f}$ where e and f are integers.

(3)

The curve **C** has equation $y = 3 - 5(x + 1)^2$

The point **A** is the maximum point on **C**.

(c) Write down the coordinates of **A**.

(.....,(1)

(Total for Question 24 is 6 marks)

25 $f(x) = 17 - 3x^2 + 12x$

Write $f(x)$ in the form $a - b(x - c)^2$ where a , b and c are constants.

$f(x) = \dots$

(Total for Question 25 is 4 marks)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

