

13 Here are two vectors.

$$\overrightarrow{AB} = \begin{pmatrix} 5 \\ 3 \end{pmatrix} \quad \overrightarrow{CB} = \begin{pmatrix} -2 \\ 4 \end{pmatrix}$$

Find, as a column vector,  $\overrightarrow{AC}$

(Total for Question 13 is 2 marks)



14 Here are two vectors.

$$\overrightarrow{AB} = \begin{pmatrix} 6 \\ -9 \end{pmatrix} \quad \overrightarrow{CB} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

Find the magnitude of  $\overrightarrow{AC}$ .

(Total for Question 14 is 3 marks)



**DO NOT WRITE IN THIS AREA****16** Here are two vectors.

$$\overrightarrow{BA} = \begin{pmatrix} -5 \\ 4 \end{pmatrix} \quad \overrightarrow{BC} = \begin{pmatrix} 9 \\ 1 \end{pmatrix}$$

Find  $\overrightarrow{AC}$  as a column vector.

$$\overrightarrow{AC} = \begin{pmatrix} \dots \\ \dots \end{pmatrix}$$

**(Total for Question 16 is 2 marks)****DO NOT WRITE IN THIS AREA**

P 7 2 4 4 4 A 0 1 7 3 2

**17** Here are two vectors.

$$\overrightarrow{FG} = \begin{pmatrix} -5 \\ 2 \end{pmatrix} \quad \overrightarrow{HG} = \begin{pmatrix} 4 \\ 14 \end{pmatrix}$$

Calculate the magnitude of the vector  $\overrightarrow{HF}$

**DO NOT WRITE IN THIS AREA**

**DO NOT WRITE IN THIS AREA**

**DO NOT WRITE IN THIS AREA**

**(Total for Question 17 is 3 marks)**



14  $ABCDEF$  and  $GHIJKL$  are regular hexagons each with centre  $O$ .

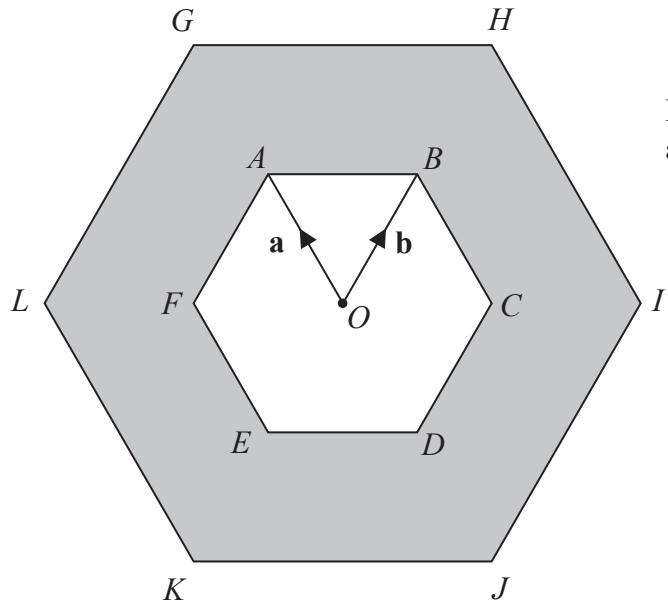



Diagram **NOT**  
accurately drawn

$GHIJKL$  is an enlargement of  $ABCDEF$ , with centre  $O$  and scale factor 2

$$\overrightarrow{OA} = \mathbf{a} \quad \overrightarrow{OB} = \mathbf{b}$$

(a) Write the following vectors, in terms of  $\mathbf{a}$  and  $\mathbf{b}$ .

Simplify your answers.

(i)  $\overrightarrow{AB}$

.....  
(1)

(ii)  $\overrightarrow{KI}$

.....  
(2)

(iii)  $\overrightarrow{LD}$

.....  
(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA



DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

The triangle  $OAB$  has an area of  $5 \text{ cm}^2$

(b) Calculate the area of the shaded region.

.....  $\text{cm}^2$

(3)

(Total for Question 14 is 8 marks)



P 6 5 9 1 5 R A 0 1 5 2 4

19 The diagram shows a triangle  $ABC$  where  $A$ ,  $B$  and  $C$  represent the positions of three towns.

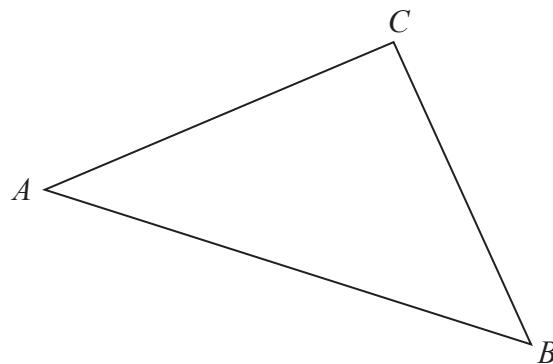



Diagram NOT  
accurately drawn

$$\overrightarrow{AB} = \begin{pmatrix} 7 \\ -2 \end{pmatrix} \quad \overrightarrow{BC} = \begin{pmatrix} -3 \\ 5 \end{pmatrix}$$

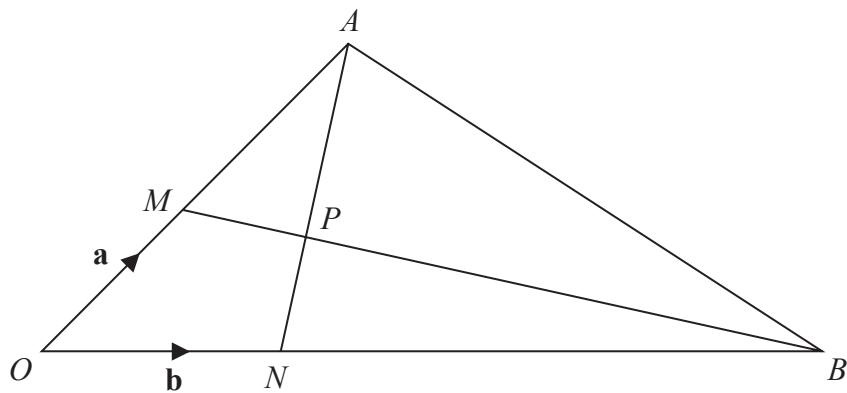
Pru travels directly from  $A$  to  $B$  and then directly from  $B$  to  $C$

Yang travels directly from  $A$  to  $C$

Given that the values for  $\overrightarrow{AB}$  and  $\overrightarrow{BC}$  are in kilometres,

work out how much further Pru travels than Yang travels.

Give your answer in km, correct to one decimal place.


..... km

**(Total for Question 19 is 5 marks)**



P 7 2 7 9 2 A 0 1 9 2 8

19

Diagram NOT  
accurately drawn $OMA, ONB, MPB$  and  $NPA$  are straight lines. $M$  is the midpoint of  $OA$  $ON:NB = 1:5$ 

$$\overrightarrow{OM} = \mathbf{a} \quad \overrightarrow{ON} = \mathbf{b}$$

(a) Find in terms of  $\mathbf{a}$  and  $\mathbf{b}$  the vector  $\overrightarrow{AN}$

(1)

(b) Use a vector method to find the ratio  $AP:PN$

$$AP:PN = \dots$$

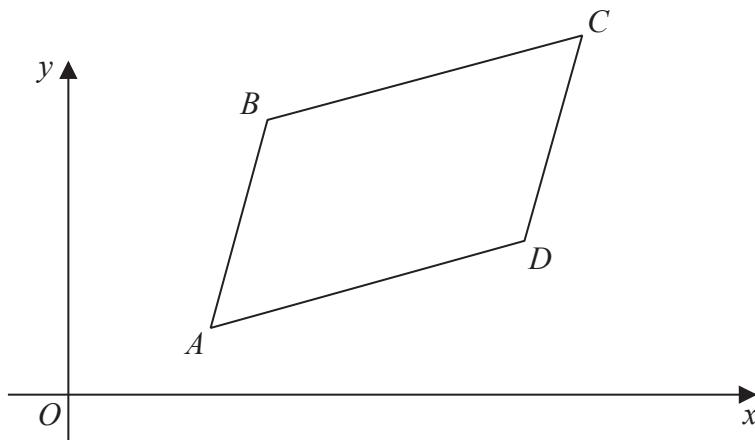
(4)

(Total for Question 19 is 5 marks)

20



P 7 2 7 9 0 A 0 2 0 2 8




DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

17 The diagram shows parallelogram  $ABCD$ .



$$\overrightarrow{AB} = \begin{pmatrix} 2 \\ 7 \end{pmatrix} \quad \overrightarrow{AC} = \begin{pmatrix} 10 \\ 11 \end{pmatrix}$$

The point  $B$  has coordinates  $(5, 8)$

(a) Work out the coordinates of the point  $C$ .

(....., .....)  
(3)

The point  $E$  has coordinates  $(63, 211)$

(b) Use a vector method to prove that  $ABE$  is a straight line.

(2)

(Total for Question 17 is 5 marks)



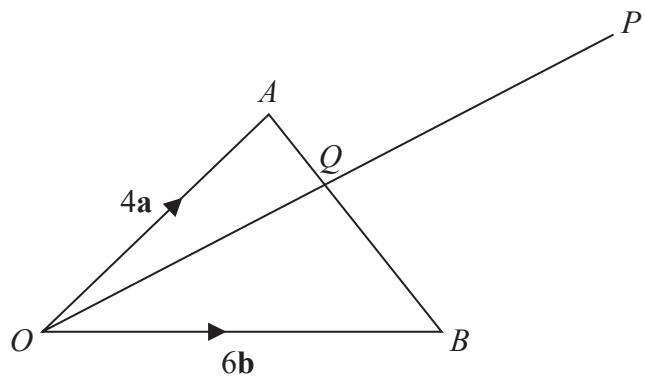
DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

19  $OAB$  is a triangle.

$$\overrightarrow{OA} = \mathbf{a} \quad \overrightarrow{OB} = \mathbf{b}$$

The point  $C$  lies on  $OA$  such that  $OC : CA = 1 : 2$


The point  $D$  lies on  $OB$  such that  $OD : DB = 1 : 2$

Using a vector method, prove that  $ABDC$  is a trapezium.

(Total for Question 19 is 3 marks)



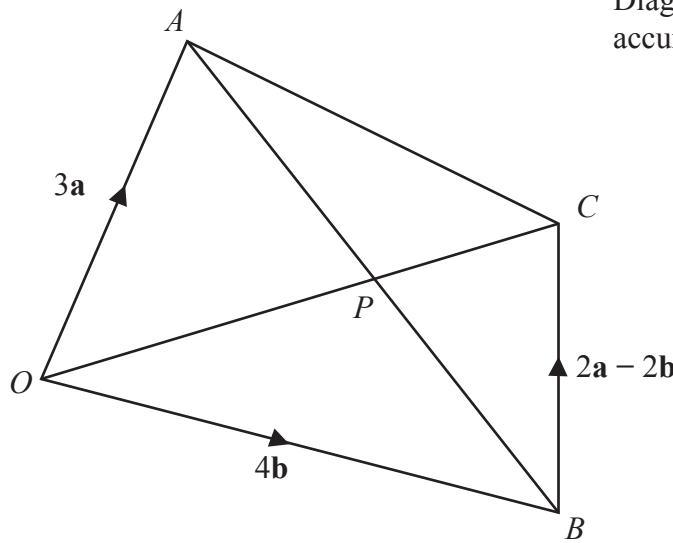
21

Diagram NOT  
accurately drawn

$OAB$  is a triangle.

$Q$  is the point on  $AB$  such that  $OQP$  is a straight line.

$$\overrightarrow{OA} = 4\mathbf{a} \quad \overrightarrow{OB} = 6\mathbf{b} \quad \overrightarrow{AP} = 2\mathbf{a} + 8\mathbf{b}$$


Using a vector method, find the ratio  $AQ:QB$

$$AQ:QB = \dots$$

(Total for Question 21 is 5 marks)



P 6 8 7 9 8 R A 0 2 1 2 4

Diagram NOT  
accurately drawn

$OACB$  is a quadrilateral.

$$\overrightarrow{OA} = 3\mathbf{a} \quad \overrightarrow{OB} = 4\mathbf{b} \quad \overrightarrow{BC} = 2\mathbf{a} - 2\mathbf{b}$$

(a) (i) Find the vector  $\overrightarrow{OC}$  in terms of  $\mathbf{a}$  and  $\mathbf{b}$   
Simplify your answer.

$$\overrightarrow{OC} = \dots \quad (1)$$

(ii) Find the vector  $\overrightarrow{AB}$  in terms of  $\mathbf{a}$  and  $\mathbf{b}$

$$\overrightarrow{AB} = \dots \quad (1)$$



The point  $P$  lies on  $AB$  and on  $OC$

(b) Using a vector method, find the ratio  $AP : PB$   
Show your working clearly.

.....  
(3)

**(Total for Question 22 is 5 marks)**



P 7 3 4 6 9 A 0 2 1 2 4

DO NOT WRITE IN THIS AREA

22  $ABCDEF$  is a regular hexagon.

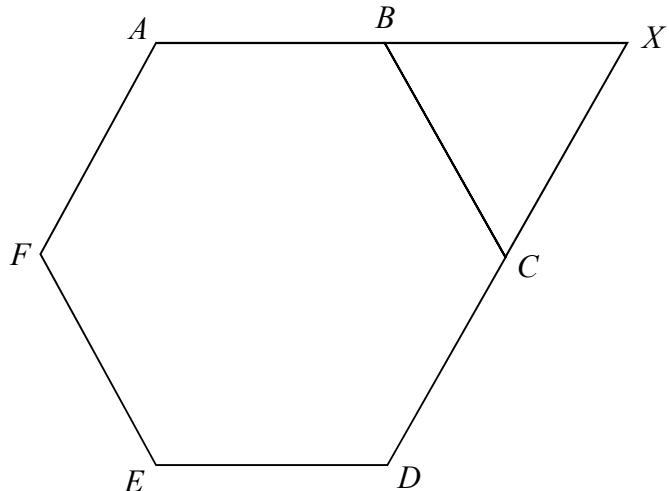



Diagram **NOT**  
accurately drawn

$ABX$  and  $DCX$  are straight lines.

$$\overrightarrow{AB} = \mathbf{a} \quad \overrightarrow{BC} = \mathbf{b}$$

Find  $\overrightarrow{EX}$  in terms of  $\mathbf{a}$  and  $\mathbf{b}$ .

Give your answer in its simplest form.

(Total for Question 22 is 4 marks)



P 5 9 0 2 2 A 0 2 5 2 8

22 The diagram shows triangle  $OAB$

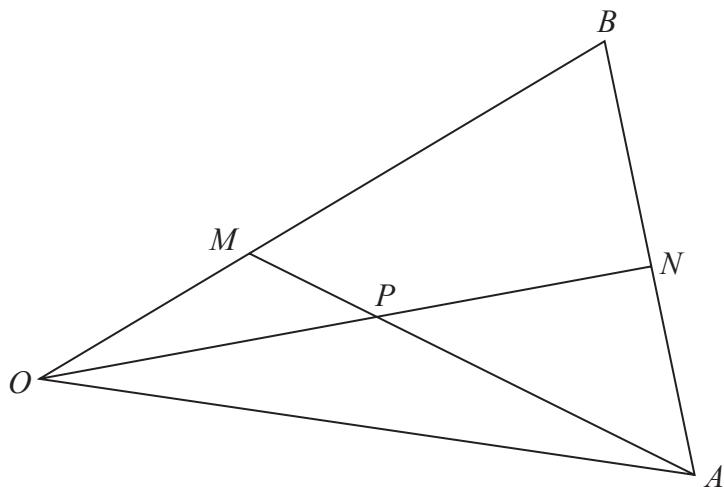



Diagram NOT  
accurately drawn

$$\overrightarrow{OA} = 8\mathbf{a} \quad \overrightarrow{OB} = 6\mathbf{b}$$

$M$  is the point on  $OB$  such that  $OM:MB = 1:2$

$N$  is the midpoint of  $AB$

$P$  is the point of intersection of  $ON$  and  $AM$

Using a vector method, find  $\overrightarrow{OP}$  as a simplified expression in terms of  $\mathbf{a}$  and  $\mathbf{b}$

Show your working clearly.

$$\overrightarrow{OP} = \dots$$

(Total for Question 22 is 5 marks)



22 The diagram shows triangle  $OAB$  with  $OA$  extended to  $E$

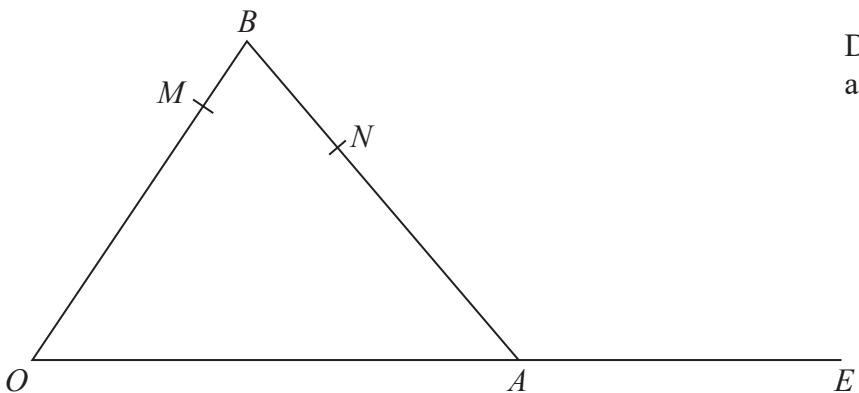



Diagram **NOT**  
accurately drawn

$$\overrightarrow{OA} = \mathbf{a} \quad \overrightarrow{OB} = \mathbf{b}$$

$M$  is the point on  $OB$  such that  $OM:MB = 4:1$

$N$  is the point on  $AB$  such that  $AN:NB = 3:2$

$OA:AE = 5:3$

(a) Find an expression for  $\overrightarrow{ON}$  in terms of  $\mathbf{a}$  and  $\mathbf{b}$   
Give your answer in its simplest form.

$$\overrightarrow{ON} = \dots \quad (2)$$



DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(b) Use a vector method to show that  $MNE$  is a straight line.

(3)

**(Total for Question 22 is 5 marks)**



P 7 2 4 3 8 A 0 2 5 2 8

23  $OAB$  is a triangle.

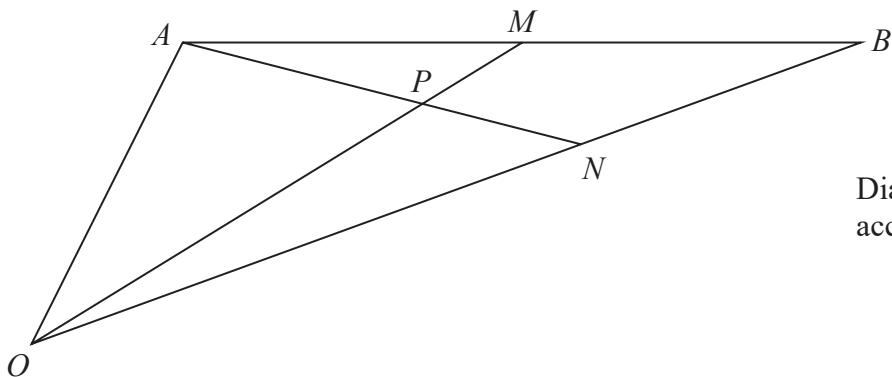



Diagram NOT  
accurately drawn

$$\overrightarrow{OA} = 2\mathbf{a} \text{ and } \overrightarrow{OB} = 2\mathbf{b}$$

$M$  is the midpoint of  $AB$ .

$N$  is the point on  $OB$  such that  $ON:NB = 2:1$

$P$  is the point on  $AN$  such that  $OPM$  is a straight line.

Use a vector method to find  $OP:PM$

Show your working clearly.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(Total for Question 23 is 6 marks)



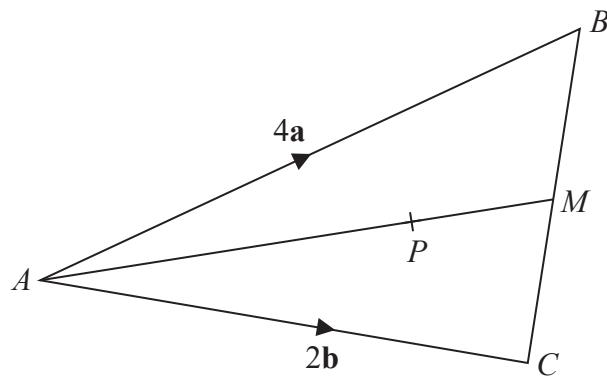
**23**  $ABCD$  is a trapezium.

$$\vec{DC} = 3\vec{AB}$$

$$\vec{DA} = \begin{pmatrix} -2 \\ 3 \end{pmatrix} \quad \vec{DB} = \begin{pmatrix} -1 \\ 7 \end{pmatrix}$$

Find the exact magnitude of  $\vec{BC}$

DO NOT WRITE IN THIS AREA


DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

**(Total for Question 23 is 5 marks)**



23

Diagram NOT  
accurately drawn

$ABC$  is a triangle.

The midpoint of  $BC$  is  $M$ .

$P$  is a point on  $AM$ .

$$\overrightarrow{AB} = 4\mathbf{a}$$

$$\overrightarrow{AC} = 2\mathbf{b}$$

$$\overrightarrow{AP} = \frac{3}{2}\mathbf{a} + \frac{3}{4}\mathbf{b}$$

Find the ratio  $AP:PM$

(Total for Question 23 is 3 marks)



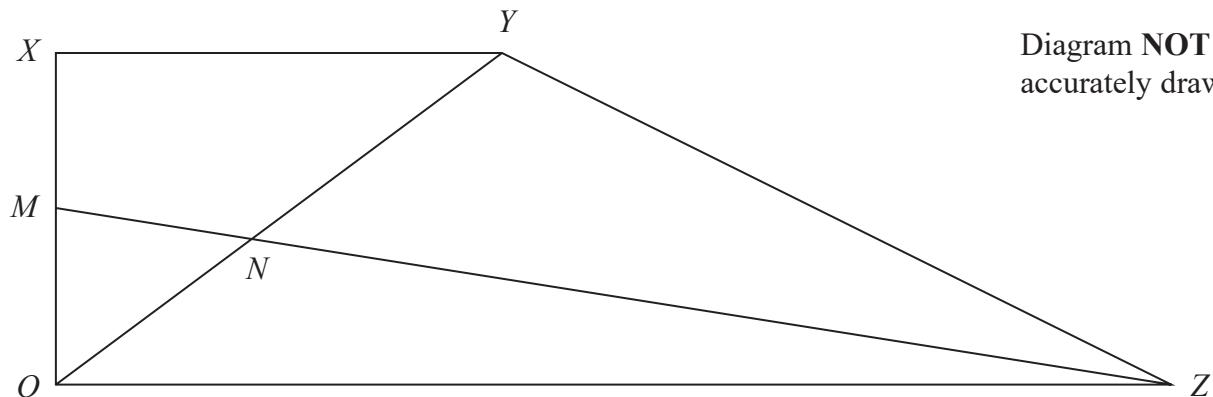
23  $OAB$  is a triangle.

$$\overrightarrow{OA} = \mathbf{a} \quad \overrightarrow{OB} = \mathbf{b}$$

$C$  is the midpoint of  $OA$ .

$D$  is the point on  $AB$  such that  $AD:DB = 3:1$

$E$  is the point such that  $\overrightarrow{OB} = 2\overrightarrow{BE}$


Using a vector method, prove that the points  $C$ ,  $D$  and  $E$  lie on the same straight line.

(Total for Question 23 is 5 marks)



P 5 9 0 1 4 A 0 2 3 2 4

24  $OXYZ$  is a trapezium.



$$\overrightarrow{OX} = \mathbf{a}$$

$$\overrightarrow{XY} = \mathbf{b}$$

$$\overrightarrow{OZ} = 3\mathbf{b}$$

$M$  is the midpoint of  $OX$

$N$  is the point such that  $MNZ$  and  $ONY$  are straight lines.

Given that  $ON : OY = \lambda : 1$

use a vector method to find the value of  $\lambda$

$$\lambda = \dots$$

**(Total for Question 24 is 5 marks)**



24  $OAED$  is a quadrilateral.

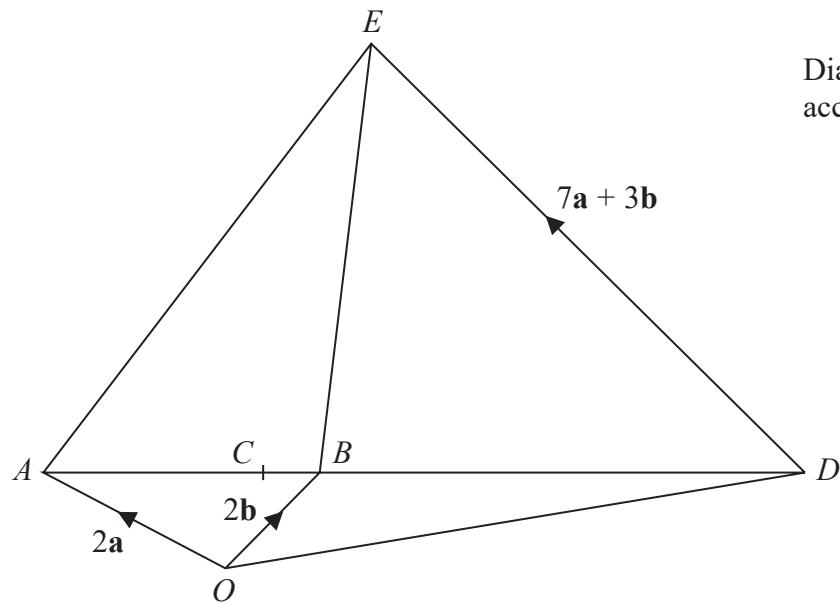



Diagram NOT  
accurately drawn

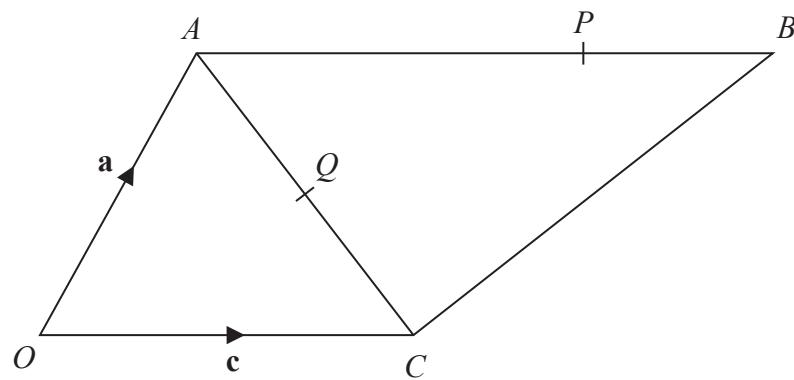
$$\overrightarrow{OA} = 2\mathbf{a} \quad \overrightarrow{OB} = 2\mathbf{b} \quad \overrightarrow{DE} = 7\mathbf{a} + 3\mathbf{b}$$

$$AB : BD = 1 : 2$$

The point  $C$  on  $AB$  is such that  $OCE$  is a straight line.

Use a vector method to find the ratio of  $OC : CE$

DO NOT WRITE IN THIS AREA


DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(Total for Question 24 is 5 marks)



24

Diagram NOT  
accurately drawn

$$\overrightarrow{OA} = \mathbf{a} \quad \overrightarrow{OC} = \mathbf{c} \quad \overrightarrow{AB} = 2\mathbf{c}$$

$P$  is the point on  $AB$  such that  $AP : PB = 3 : 1$

$Q$  is the point on  $AC$  such that  $OQP$  is a straight line.

Use a vector method to find  $AQ : QC$

Show your working clearly.

$$AQ : QC = \dots$$

(Total for Question 24 is 5 marks)



P 6 0 2 6 0 A 0 2 3 2 4

25  $ABCD$  is a parallelogram and  $ADM$  is a straight line.

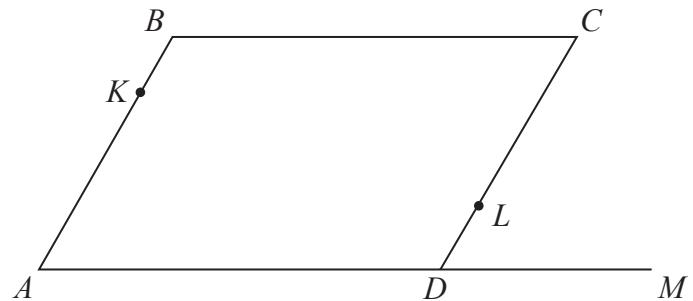



Diagram **NOT**  
accurately drawn

$$\overrightarrow{AB} = \mathbf{a} \quad \overrightarrow{BC} = \mathbf{b} \quad \overrightarrow{DM} = \frac{1}{2} \mathbf{b}$$

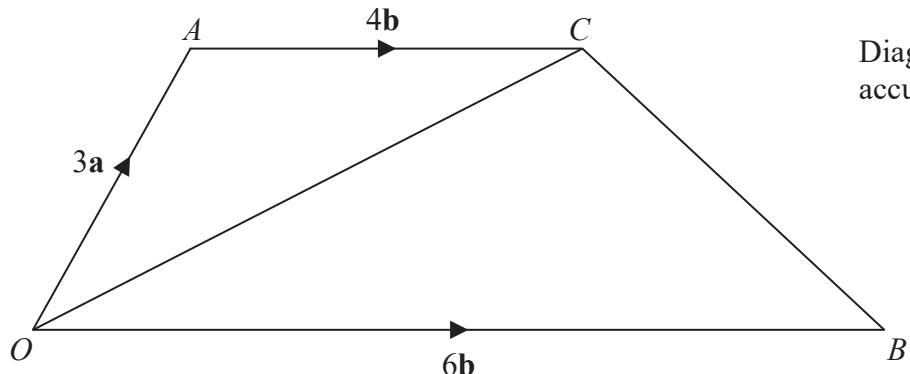
$K$  is the point on  $AB$  such that  $AK:AB = \lambda:1$

$L$  is the point on  $CD$  such that  $CL:CD = \mu:1$

$KLM$  is a straight line.

Given that  $\lambda:\mu = 1:2$

use a vector method to find the value of  $\lambda$  and the value of  $\mu$


$$\lambda = \dots$$

$$\mu = \dots$$

**(Total for Question 25 is 5 marks)**



**26** The diagram shows trapezium  $OACB$ .



$$\vec{OA} = 3\mathbf{a} \quad \vec{OB} = 6\mathbf{b} \quad \vec{AC} = 4\mathbf{b}$$

$N$  is the point on  $OC$  such that  $ANB$  is a straight line.

Find  $\vec{ON}$  as a simplified expression in terms of  $\mathbf{a}$  and  $\mathbf{b}$ .

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(Total for Question 26 is 5 marks)



26  $OACB$  is a trapezium.

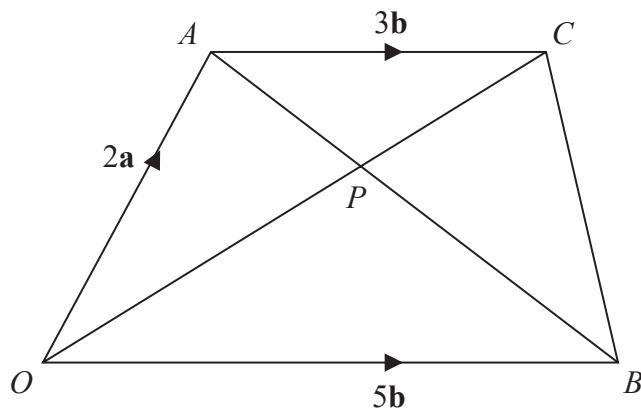
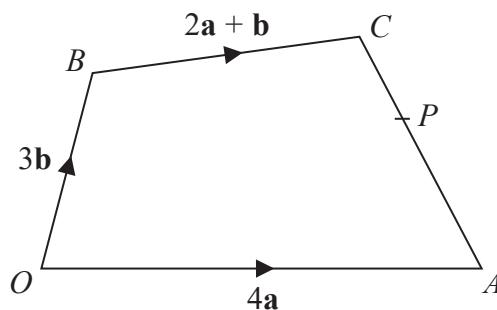



Diagram **NOT**  
accurately drawn

$$\overrightarrow{OA} = 2\mathbf{a} \quad \overrightarrow{OB} = 5\mathbf{b} \quad \overrightarrow{AC} = 3\mathbf{b}$$

The diagonals,  $OC$  and  $AB$ , of the trapezium intersect at the point  $P$ .


Find and simplify an expression, in terms of  $\mathbf{a}$  and  $\mathbf{b}$ , for  $\overrightarrow{OP}$   
Show your working clearly.

$$\overrightarrow{OP} = \dots$$

(Total for Question 26 is 5 marks)



24

Diagram NOT  
accurately drawn

The diagram shows a quadrilateral  $OACB$  in which

$$\overrightarrow{OA} = 4\mathbf{a} \quad \overrightarrow{OB} = 3\mathbf{b} \quad \overrightarrow{BC} = 2\mathbf{a} + \mathbf{b}$$

(a) Find  $\overrightarrow{AC}$  in terms of  $\mathbf{a}$  and  $\mathbf{b}$   
Give your answer in its simplest form.

$$\overrightarrow{AC} = \dots \quad (2)$$

The point  $P$  lies on  $AC$  such that  $AP:PC = 3:2$

The point  $Q$  is such that  $OPQ$  and  $BCQ$  are straight lines.

(b) Using a vector method, find  $\overrightarrow{OQ}$  in terms of  $\mathbf{a}$  and  $\mathbf{b}$   
Give your answer in its simplest form.  
Show your working clearly.

$$\overrightarrow{OQ} = \dots \quad (4)$$

(Total for Question 24 is 6 marks)



24  $OAB$  is a triangle.

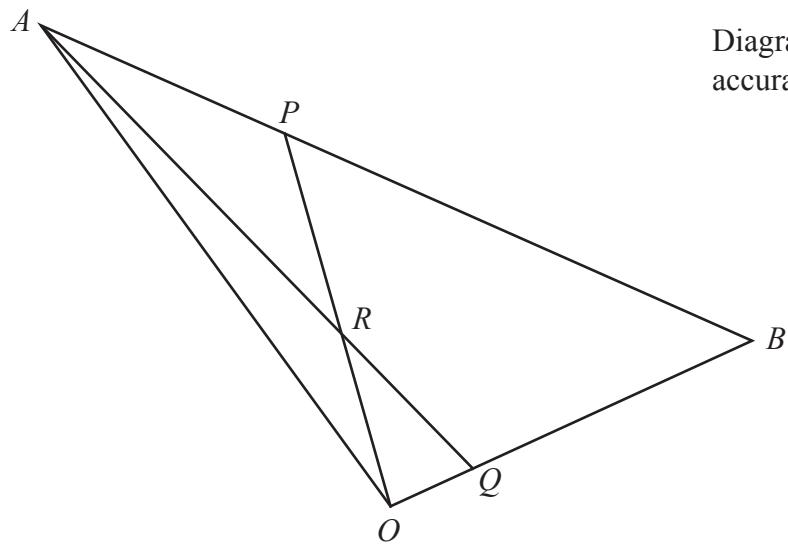



Diagram NOT  
accurately drawn

$$\overrightarrow{OA} = 10\mathbf{a} \quad \overrightarrow{OB} = 10\mathbf{b}$$

$ARQ$  and  $ORP$  are straight lines.

$$\overrightarrow{AP} = \frac{1}{4} \overrightarrow{AB} \quad \text{and} \quad \overrightarrow{OQ} = \frac{1}{5} \overrightarrow{OB}$$

Write the following vectors in terms of  $\mathbf{a}$  and  $\mathbf{b}$   
Simplify your answers.

(i)  $\overrightarrow{AQ}$

.....  
(1)

(ii)  $\overrightarrow{OP}$

.....  
(1)

(iii)  $\overrightarrow{OR}$

.....  
(4)

(Total for Question 24 is 6 marks)



25  $OPQR$  is a parallelogram.

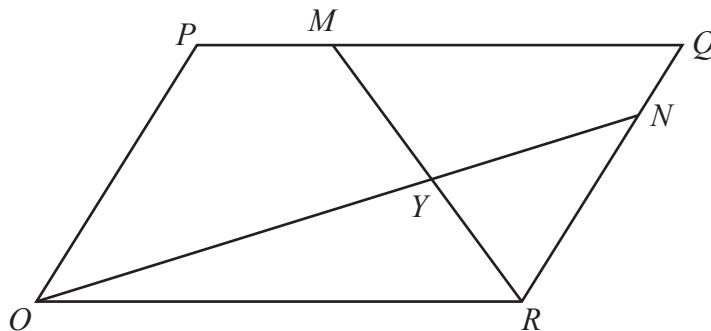



Diagram **NOT**  
accurately drawn

$$\overrightarrow{OP} = 2\mathbf{a} \quad \text{and} \quad \overrightarrow{OR} = 3\mathbf{b}$$

The point  $M$  lies on  $PQ$  such that  $PM = \frac{1}{4} PQ$

The point  $N$  lies on  $RQ$  such that  $RN = \frac{4}{5} RQ$

(a) Find, in terms of  $\mathbf{a}$  and  $\mathbf{b}$ , giving your answers in simplest form

(i)  $\overrightarrow{ON}$

(1)

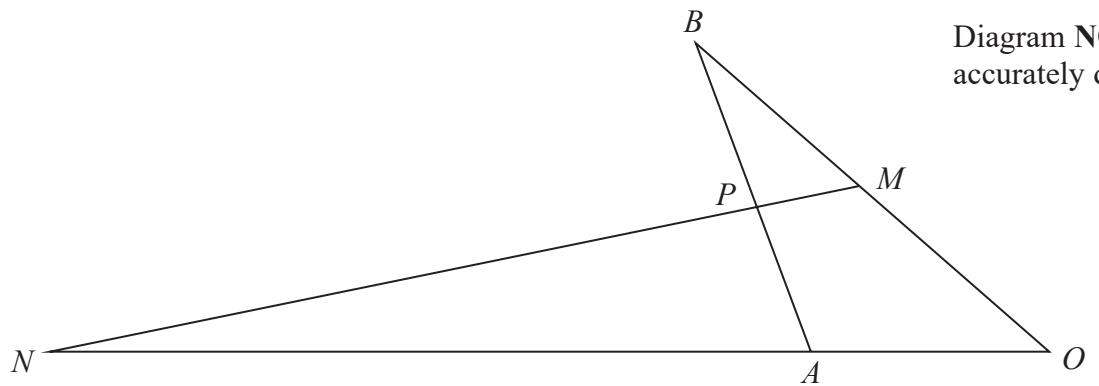
(ii)  $\overrightarrow{MR}$

(1)

$MR$  and  $ON$  intersect at the point  $Y$

Given that

$$OY = k \times ON$$


(b) use a vector method to find the value of  $k$

$k = \dots$

(4)

(Total for Question 25 is 6 marks)



**25****Diagram NOT  
accurately drawn**

$OAN$ ,  $OMB$ ,  $APB$  and  $MPN$  are straight lines.

$$OA:AN = 1:4$$

$$OM:MB = 1:1$$

$$\overrightarrow{OA} = 2\mathbf{a} \quad \overrightarrow{OB} = 2\mathbf{b}$$

By using a vector method, find the ratio  $AP:PB$

Give your answer in its simplest form.

**DO NOT WRITE IN THIS AREA****DO NOT WRITE IN THIS AREA****DO NOT WRITE IN THIS AREA**

**(Total for Question 25 is 5 marks)**

