

17 Here are a solid sphere and a solid cylinder.

The radius of the sphere is $r \text{ cm}$.

The radius of the cylinder is $r \text{ cm}$.

The height of the cylinder is $2r \text{ cm}$.

The total surface area of the cylinder is $k\pi \text{ cm}^2$

(a) Find an expression for k in terms of r .

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

.....
(2)

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(b) Show that the ratio

total surface area of the cylinder : total surface area of the sphere

is the same as the ratio

volume of the cylinder : volume of the sphere

(3)

(Total for Question 17 is 5 marks)

17 A solid, S , is made from a hemisphere and a cylinder.

The centre of the circular face of the hemisphere and the centre of the top face of the cylinder are at the same point.

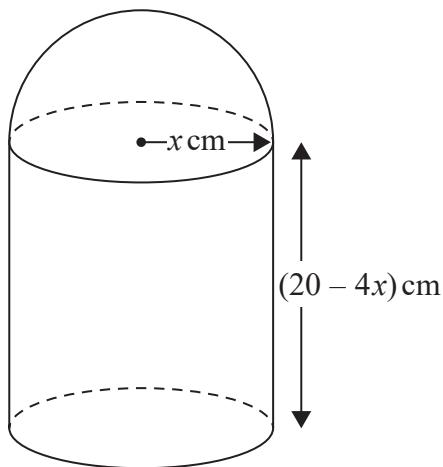


Diagram NOT
accurately drawn

The radius of the cylinder and the radius of the hemisphere are both x cm.
The height of the cylinder is $(20 - 4x)$ cm.

The volume of S is V cm³ where $V = \frac{1}{3}\pi y$

Find the maximum value of y .
Show clear algebraic working.

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(Total for Question 17 is 5 marks)

21 A solid is made from a hemisphere and a cylinder.
The plane face of the hemisphere coincides with the upper plane face of the cylinder.

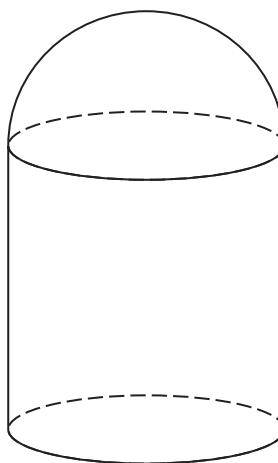


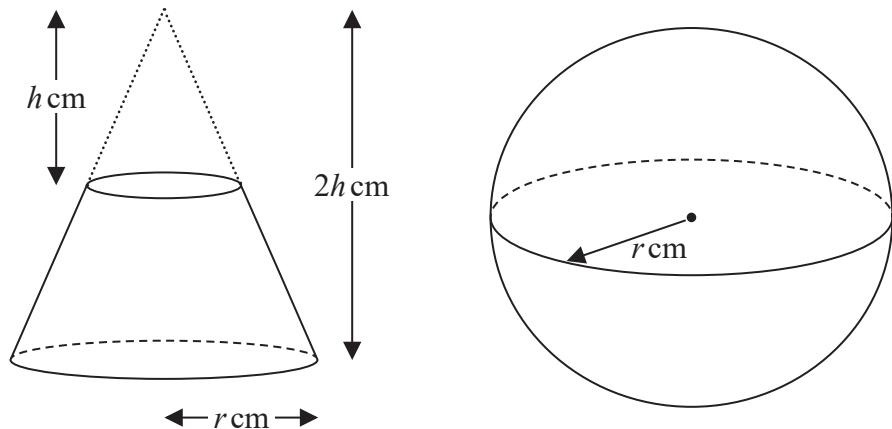
Diagram NOT
accurately drawn

The hemisphere and the cylinder have the same radius.

The ratio of the radius of the cylinder to the height of the cylinder is $1 : 3$

Given that the solid has volume $792\pi\text{cm}^3$
work out the height of the solid.

..... cm


(Total for Question 21 is 5 marks)

P 5 8 3 6 5 A 0 2 1 2 4

20 The diagram shows a frustum of a cone and a sphere.

The frustum is made by removing a small cone from a large cone.
The cones are similar.

The height of the small cone is h cm.

The height of the large cone is $2h$ cm.

The radius of the base of the large cone is r cm.

The radius of the sphere is r cm.

Given that the volume of the frustum is equal to the volume of the sphere,

find an expression for r in terms of h .

Give your expression in its simplest form.

$r = \dots$

(Total for Question 20 is 5 marks)

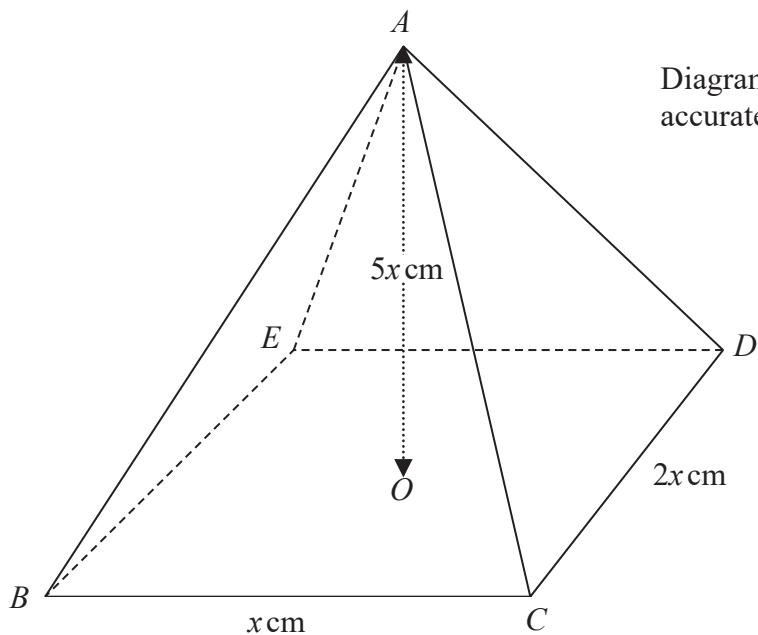
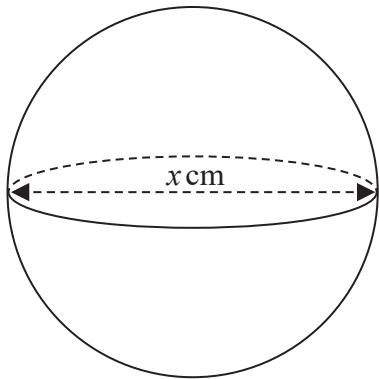
21 Given that the surface area of a sphere is $49\pi\text{cm}^2$

find the volume of the sphere.

Give your answer correct to the nearest integer.

..... cm^3

(Total for Question 21 is 3 marks)



DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

22 The diagram shows a sphere of diameter x cm and a pyramid $ABCDE$ with a horizontal rectangular base $BCDE$.

The vertex A of the pyramid is vertically above the centre O of the base so that $AB = AC = AD = AE$.

$BC = x$ cm, $CD = 2x$ cm and $AO = 5x$ cm.

The volume of the sphere is $288\pi\text{cm}^3$

Calculate the total surface area of the pyramid.
Give your answer correct to the nearest cm^2

..... cm^2

(Total for Question 22 is 6 marks)

22 A solid is made from a cone and a hemisphere.

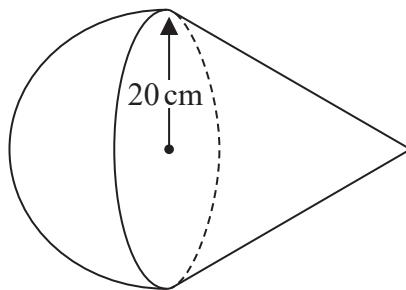


Diagram **NOT**
accurately drawn

The circular plane face of the hemisphere coincides with the circular base of the cone.
The radius of the hemisphere and the radius of the circular base of the cone are both 20 cm.

The curved surface area of the cone is $580\pi\text{cm}^2$

The volume of the solid is $k\pi\text{cm}^3$

Work out the exact value of k

$k = \dots$

(Total for Question 22 is 5 marks)

P 6 8 7 9 6 A 0 2 3 2 8

22 The diagram shows a bowl in the shape of a hemisphere. The bowl is made from metal.

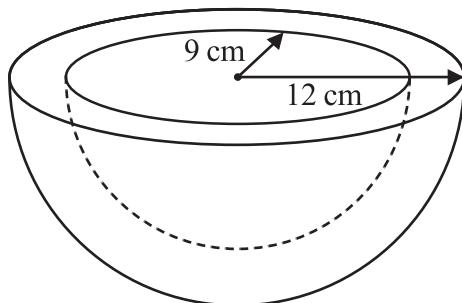


Diagram NOT
accurately drawn

The outer radius of the bowl is 12 cm

The inner radius of the bowl is 9 cm

The thickness of the bowl is uniform.

Work out the volume of the metal.

Give your answer correct to the nearest whole number.

..... cm^3

(Total for Question 22 is 3 marks)

P 7 5 9 3 4 A 0 2 3 2 8

23 A solid shape is made by removing a hemisphere, shown shaded, from a cone as shown in the diagram.

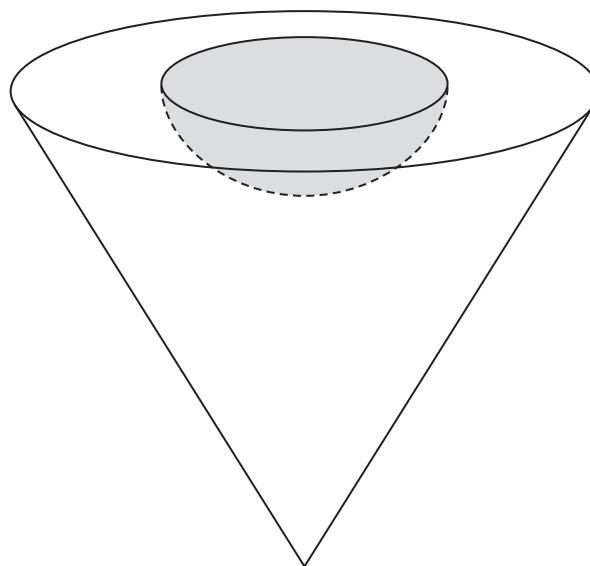


Diagram **NOT**
accurately drawn

The radius of the hemisphere is $2x$ cm

The radius of the base of the cone is $5x$ cm

The vertical height of the cone is $6x$ cm

The volume of the solid shape is 6948π cm³

Work out the **total** surface area of the solid hemisphere that has been removed from the cone. cm²

Give your answer correct to the nearest integer.

(Total for Question 23 is 5 marks)

24 The diagram shows a solid cone and a solid sphere.

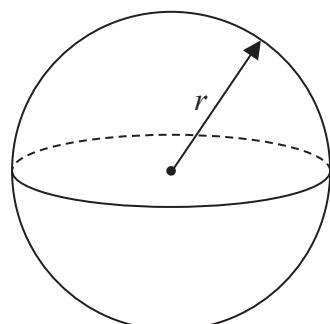
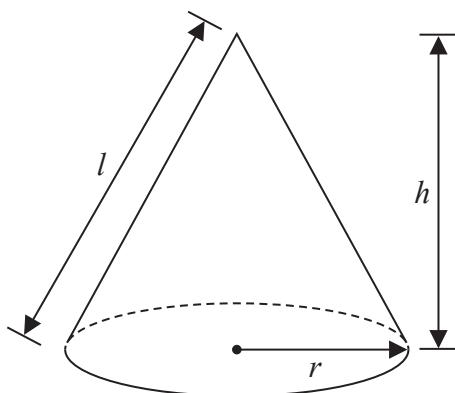



Diagram NOT
accurately drawn

The cone has base radius r , slant height l and perpendicular height h
The sphere has radius r

The base radius of the cone is equal to the radius of the sphere.

Given that

$$k \times \text{volume of the cone} = \text{volume of the sphere}$$

show that the **total** surface area of the cone can be written in the form

$$\pi r^2 \left(\frac{k + \sqrt{k^2 + a}}{k} \right)$$

where a is a constant to be found.

(Total for Question 24 is 6 marks)

